Aller au contenu principal

Tirer parti des données massives des réseaux mobiles pour établir des politiques de développement

Nombre de pays en développement sont dépourvus des capacités et des ressources requises pour recueillir et analyser des données aux fins de l'élaboration de politiques basées sur des données probantes. Les données massives, qui consistent en des ensembles de données volumineux et complexes, permettraient-elles de relever ce défi ? Ou sera-t-il difficile pour les pays en développement de s'en servir pour régler des problèmes ? Ce projet examinera le potentiel des données massives d'orienter les politiques de développement relatives à l'urbanisme, aux maladies infectieuses et à la surveillance socioéconomique au Sri Lanka et au Bangladesh.

Données massives et données probantes issues de la recherche
Certains soutiennent que les données massives et leurs utilisateurs aident à produire des données probantes. La disponibilité des technologies de l'information et des communications (TIC) peut contribuer à réduire les efforts nécessaires pour recueillir des ensembles de données volumineux. Les données du réseau téléphonique mobile, une forme de données massives, ont une plus grande portée. Elles fournissent de nouvelles perspectives sur la façon de régler les problèmes sociaux et économiques.

Transport, maladies et surveillance socioéconomique
Learning Initiatives on Reforms for Network Economies Asia (LIRNEasia), un think tank sri lankais, examine depuis 2012 la possibilité d'utiliser les données massives pour orienter les politiques publiques. Appuyée par le CRDI, cette recherche est axée sur la planification du transport dans les centres urbains de Colombo pour mieux intégrer différentes parties des villes et des banlieues.

Tirant parti de cette recherche de pointe, LIRNEasia propose d'étendre la portée à d'autres domaines du développement. Le projet permettra notamment d'examiner l'utilisation des données massives pour orienter les politiques dans trois domaines : le transport urbain, les maladies infectieuses et la surveillance socioéconomique.

Grâce au projet, LIRNEasia progressera dans ses travaux de mise en concordance de données massives provenant des utilisateurs de téléphones mobiles avec des domaines importants du développement. Dans le domaine du transport urbain, les données de ces utilisateurs pourraient avoir un impact important sur l'amélioration du réseau de transport dans deux grandes villes de l'Asie du Sud : Colombo et Dhaka. Les deux villes pourraient ainsi s'attaquer avec plus d'efficacité aux embouteillages, à la pollution et à la gestion des déchets.

Les chercheurs exploreront aussi l'utilisation des données massives pour cartographier la propagation des maladies émergentes au Sri Lanka. L'objectif est d'améliorer les politiques de santé publique.

Enfin, les chercheurs mettront au point des méthodes pour cartographier la pauvreté au moyen des transactions de téléphones mobiles, comme les chargements de minutes de communication. Ces travaux exploratoires permettront aux chercheurs de mieux comprendre les tendances des activités économiques individuelles, dans le but d'orienter la politique gouvernementale.

No projet
108008
État du projet
Terminé
Date de fin
Durée
24 months
Agent(e) responsable du crdi
Ruhiya Seward
Financement total
CA$ 725,000.00
Emplacement
Bangladesh
Sri Lanka
Programmes
Économies en réseaux
Information et réseaux en Asie et en Afrique subsaharienne
Pays de l’institution
Sri Lanka
Chargé(e) de projet
Rohan Samarajiva
Institution
LirneAsia

Résultats

Annex 16 : automated traffic monitoring for complex road conditions

Annex 16 : automated traffic monitoring for complex road conditions

Article

Recent advancements in computer vision and machine learning techniques have made traffic monitoring systems highly effective in well structured traffic conditions such as highways. But these systems struggle in handling complex and irregular conditions that exist in developing countries, due to lack of infrastructure and regulation. This research breaks down the problem into different sub-tasks such as vehicle detection, vehicle tracking, and vehicle recognition, then combines each process into one pipeline that can be used for traffic monitoring. Implementing the final pipeline involves improving and aggregating existing techniques. Results demonstrate the potential of these techniques for automated traffic monitoring.

Auteur ou autrice(s) : Opatha, R. K, Peiris, Akila, Gamini, D. D. A., Edirisuriya, Ananda, Athuraliya, C. D., Jayasooriya, Isuru

Télécharger le PDF

Langage : Anglais

Understanding communities using mobile network big data CPRsouth 2015

Understanding communities using mobile network big data CPRsouth 2015

Paper

Understanding the strength and boundaries of human connections can help identify communities amongst a population, and is valuable knowledge for modeling disease spread, information flow, and mobility patterns. Administrative boundaries, formed by history and geography, do not necessarily reflect the actual communities or social interaction patterns within a region. In this study we employ community detection algorithms to a mobile Call Detail Records (CDR) network in Sri Lanka in order to compare natural communities existing in the interaction network against administrative regions of Sri Lanka. Additionally we explore how these communities segment into a further level of sub-communities.

Auteur ou autrice(s) : Madhawa, Kaushalya, Lokanathan, Sriganesh, Samarajiva, Rohan, Maldeniya, Danaja

Télécharger le PDF

Langage : Anglais

Improving disease outbreak forecasting models for efficient targeting of public health resources

Improving disease outbreak forecasting models for efficient targeting of public health resources

Article

The forecasting models developed in this work can be utilized to effect better resource mobilisation for combatting dengue. For understanding human mobility in disease propagation, Mobile Network Big Data (MNBD) is a low cost data exhaust that provides rich insight into human mobility patterns, including better spatial and temporal granularity. Research focuses on the development of a human mobility model, using MNBD that can accurately depict aggregate human population movements in Sri Lanka, and from this determine which machine learning technique provides the best disease forecasting model.

Auteur ou autrice(s) : Fernando, Lasantha, Perera, Amal, Lokanathan, Sriganesh

Télécharger le PDF

Langage : Anglais

Annex 19 : predictive model for the dengue incidences in Sri Lanka using mobile network big data

Annex 19 : predictive model for the dengue incidences in Sri Lanka using mobile network big data

Paper

The study constructs a usable predictive model for any given Medical Officer of Health (MOH) division, which is the smallest medical administrative district in Sri Lanka, by taking human mobility into account. It includes the importation of dengue into immunologically ’naive’ regions. Derived mobility values for each region of the country are weighted using reported past dengue cases. The study introduces a generalizable methodology to fuse big data sources with traditional data sources, using machine learning techniques. Mobile Network Big Data (MNBD) consists of data categories such as Call Detail Records (CDR), Internet access usage records, and airtime recharge records.

Auteur ou autrice(s) : Dharmawardana, K.G.S., Lokuge, K. S., Dassanayake, P. S. B., Sirisena, M. L., Fernando, Lasantha, Perera, Amal Shehan, Lokanathan, Sriganesh

Télécharger le PDF

Langage : Anglais

Final technical report : leveraging mobile network big data for developmental policy

Final technical report : leveraging mobile network big data for developmental policy

Report

The research addresses how big data can provide evidence to better inform public policy and allow for greater use of evidence in the policy making process. In addition to more detailed research in the area of transportation and urban planning (commuting patterns), this research articulates and answers questions in other domains such as health (modeling the spread of diseases) and official statistics (mapping poverty for instance). Guidelines were translated into legal language so that mobile operators can responsibly share data. Traditional survey methods that provide enough detail to accurately assess conditions are costly and can rarely reach a representative portion of the population, especially in poorer areas.

Auteur ou autrice(s) : LIRNEasia

Télécharger le PDF

Langage : Anglais

Annex 19 : predicting population-level socio-economic characteristics using Call Detail Records (CDRs) in Sri Lanka

Annex 19 : predicting population-level socio-economic characteristics using Call Detail Records (CDRs) in Sri Lanka

Brief

National census information is time-consuming and expensive to collect. This research helps determine whether mobile phone data can provide a reliable, cheap proxy for census data within Sri Lanka, especially where post-conflict regions need more frequent data collection. Study findings suggest that socio-economic levels (SEL) can affect call detail records (CDR) data in a post-conflict, Sri Lankan setting. Analysis demonstrates the potential for telecom data to predict census features. The results correspond to assumptions about the population under study, which includes a high percentage of vulnerable, highly mobile groups displaced due to conflict.

Auteur ou autrice(s) : Surendra, Aparna, Lokanathan, Sriganesh, Fernando, Lasantha, Perera-Gomez, Thavisha

Télécharger le PDF

Langage : Anglais

Big data at the heart of smart cities

Article

Until recently, constraints of computer memory, retrieval, and processing limited the use of data to entities who could afford supercomputers. Since hardware and memory have declined in price and improved functionality and open-source software has been developed, big data analytics have been democratized. For example, using smart phone data, Sri Lankan city of Colombo has analysed population nodes, and unlike expensive industry surveys, can pinpoint locales as “leaning commercial” or “leaning residential.” To feed data, infrastructure investments are required. But a city becomes smart only when its functioning improves due to enhanced feedback, and creative responses are made.

Auteur ou autrice(s) : Samarajiva, Rohan

Demander une copie

Using mobile network big data for land use classification CPRsouth 2015

Using mobile network big data for land use classification CPRsouth 2015

Paper

The traditional way of generating insights on land use involve surveys and censuses, which are both infrequent as well as costly. This paper explores the potential of leveraging massive amounts of human mobile phone data to understand the spatiotemporal activity of mass populations, and by extension, provide a useful proxy for activity-based classification of land use. Understanding and monitoring land use characteristics is critical for urban planning. The study demonstrates possibilities for use of mobile network big data, and how it can be leveraged to infer three distinct land use characteristics: commercial/ economic, residential, and mixed-use.

Auteur ou autrice(s) : Madhawa, Kaushalya, Lokanathan, Sriganesh, Maldeniya, Danaja, Samarajiva, Rohan

Télécharger le PDF

Langage : Anglais

Where did you come from? : where did you go?; robust policy relevant evidence from mobile network big data

Where did you come from? : where did you go?; robust policy relevant evidence from mobile network big data

Paper

The paper discusses how output from mobility analysis based on mobile network big data (MNBD) can be aligned with the different stages of traditional forecasting frameworks familiar to transport planners and policy makers. Levels of accuracy and detail are estimated, so that mobility insights-based MNBD can be delivered. Recently developed approaches for estimating mobility are compared, and results are validated against data from traditional methods. The limitations of MNBD are presented, and alternatives are proposed to address these limitations in future work. The research aims to extend state of the art data mining to support and transform efficiencies in transportation planning.

Auteur ou autrice(s) : Maldeniya, Danaja, Kumarage, Amal, Lokanathan, Sriganesh, Kreindler, Gabriel, Madhawa, Kaushalya

Télécharger le PDF

Langage : Anglais

Annex 21 : scrutiny of electricity billing and supply data as a probable proxy for economic activities : an analysis of power consumption of Dhaka, Bangladesh (draft)

Annex 21 : scrutiny of electricity billing and supply data as a probable proxy for economic activities : an analysis of power consumption of Dhaka, Bangladesh (draft)

Paper

This case study attempts to provide a load forecasting model to help ascertain short-term electricity demand at the regional level in Bangladesh. To assist policy makers in determining how regulatory decisions impact behavior, consumer level billing data, and power satiation level, supply data such as load variability and load shedding is analyzed. Cleaning the dataset and dealing with outlier values includes such problems as lack of exact household addresses in Dhaka city. The impact of changes in appliance use due to weather or price hikes is examined in order to predict future energy needs of consumers.

Auteur ou autrice(s) : Zaber, Moinul, Bhyiyan, Farhad, Sayeed, Abu, Islam, Samiul, Rakib, Nibras, Ali, Amin

Télécharger le PDF

Langage : Anglais

Annex 17 : deep semantic segmentation for built-up area extraction and mapping from satellite imagery

Annex 17 : deep semantic segmentation for built-up area extraction and mapping from satellite imagery

Paper

Research focuses on generating more usable built-up area maps, as traditional methods (such as surveys and census) are infrequent and costly. The work proposes a modified Fully Convolutional Network (FCN) architecture that will improve semantic segmentation operation on satellite imagery for built-up area extraction and urban mapping. This method could bridge the gap between existing extraction techniques and actual land cover/built-up area maps used by practitioners. Applications are potentially to socio-economic classification and urban planning, where building density functions as a proxy measure for socio-economic level, and building distribution for urban area estimates and growth, respectively.

Auteur ou autrice(s) : Athuraliya, C. D., Ramasinghe, Sameera, Lokanathan, Sriganesh

Télécharger le PDF

Langage : Anglais

Annex 20 : code of practice for the secondary use of mobile network big data

Annex 20 : code of practice for the secondary use of mobile network big data

Paper

Personal data must be protected against accidental destruction or loss, alteration, and unauthorized disclosure or access. This Code of Practice addresses issues related to the processing and uses of Mobile Network Big Data (MNBD), where data collection practices “will be transparent and will not go beyond /will desist from collecting more data than needed for the efficient operation of the network and the supply of goods and services to the customer.” It covers data storage, as well as accountability of Data Controllers, and compliance with national standards within binding agreements.

Auteur ou autrice(s) :

Télécharger le PDF

Langage : Anglais

Annex 14 : bulk data : policy implications (draft)

Annex 14 : bulk data : policy implications (draft)

Paper

The term “bulk surveillance” is used to describe the collection and analysis of behavioral big data relevant to maintenance of law and order, broadly defined. Avoidance of detection by law breakers may be perceived as easier in virtual space when agents of the law are at a technological disadvantage. The focus of this paper is on the subset of big data known as transaction-generated data (also described as “data exhaust”) arising from the day-to-day behaviors of persons and the technological devices closely associated with them. What should the principles be with regard to bulk surveillance and uses of personal data?

Auteur ou autrice(s) : Samarajiva, Rohan, Perera-Gomez, Thavisha

Télécharger le PDF

Langage : Anglais

Leveraging mobile network big data for developmental policy : final technical report

Leveraging mobile network big data for developmental policy : final technical report

Report

This final report reviews research conducted around the potential uses of big data towards better informed public policy, and to expand the use of evidence-based research in the policy making process. Through this project, LIRNEasia extended its pioneering research based on Mobile Network Big Data (MNBD). New sources of data were leveraged in addition to MNBD, including Closed Circuit Television (CCTV), satellite imagery, electricity data, crowd-sourced data, as well as “small” data from government agencies and others. In addition to the generation of actionable insights, LIRNEasia is developing capacity in local universities and among new researchers.

Auteur ou autrice(s) :

Télécharger le PDF

Langage : Anglais